STUDI NUMERIK PENGARUH LEBAR SPESIMEN TERHADAP SIFAT TARIK AISI 1010 MENGACU PADA ASTM E8
Keywords:
AISI 1010, ASTM E8, Metode Elemen Hingga, Uji Tarik, StrukturAbstract
Penelitian ini bertujuan untuk mengevaluasi pengaruh variasi lebar spesimen terhadap sifat mekanik tarik baja karbon rendah AISI 1010 melalui pendekatan simulasi numerik berbasis metode elemen hingga (Finite Element Analysis/FEA) menggunakan perangkat lunak Ansys Workbench. Spesimen uji tarik dimodelkan dalam bentuk dog-bone sesuai standar ASTM E8 dengan dua variasi lebar daerah ukur, yaitu 6 mm (sub-size specimen) dan 12.5 mm (standard specimen). Parameter material dimasukkan berdasarkan data sifat mekanik AISI 1010, sedangkan pembebanan diberikan dalam bentuk kendali perpindahan aksial pada ujung penjepit. Hasil simulasi menunjukkan bahwa spesimen dengan lebar 12.5 mm memiliki tegangan maksimum dan deformasi plastis yang lebih tinggi serta distribusi regangan yang lebih homogen dibandingkan spesimen 6 mm. Sebaliknya, spesimen berlebar 6 mm cenderung mengalami konsentrasi regangan pada daerah transisi fillet–gage sehingga kekuatan tarik yang diperoleh lebih rendah. Temuan ini menegaskan bahwa pemilihan lebar spesimen sesuai standar ASTM E8 berperan penting dalam memperoleh hasil uji tarik yang representatif dan akurat. Penelitian ini memberikan kontribusi dalam memperkuat pemahaman mengenai pengaruh geometri spesimen terhadap karakterisasi sifat mekanik material serta menjadi rujukan bagi penelitian dan pengujian lanjutan yang menggunakan pendekatan simulasi numerik.
Downloads
References
Mohammed, A. A., Haris, S. M., & Al Azzawi, W. (2020). Estimation of the ultimate tensile strength and yield strength for the pure metals and alloys by using the acoustic wave properties. Scientific Reports, 10(1), 12499. https://doi.org/10.1038/s41598-020-69387-z
Alharbi, S. O., Ahmad, S., Gul, T., Ali, I., & Bariq, A. (2024). The corrosion behavior of low carbon steel (AISI 1010) influenced by grain size through microstructural mechanical. Scientific Reports, 14(1), Article 47744. https://doi.org/10.1038/s41598-023-47744-y
Banabic, D. (2010). Influence of specimen geometry on tensile test results. International Journal of Material Forming, 3(2), 123–130. https://doi.org/10.1007/s12289-010-0791-1
Callister, W. D., & Rethwisch, D. G. (2014). Materials science and engineering: An introduction (9th ed.). Hoboken, NJ: Wiley.
Davis, J. R. (1990). Metals handbook: Properties and selection – Irons, steels, and high-performance alloys. Materials Park, OH: ASM International.
Dieter, G. E. (1986). Mechanical metallurgy (3rd ed.). New York, NY: McGraw-Hill.
Hoffman, R. B. (2011). FEA evaluation of specimen geometry influence. Engineering Computations, 28(3), 256–273. https://doi.org/10.1108/02644401111118150
Jin, P. H., Kim, M. S., & Kim, Y. H. (2011). Effect of gage geometry on tensile behavior of aluminum alloys. Materials Science and Engineering A, 528(15), 5343–5348. https://doi.org/10.1016/j.msea.2011.03.021
Koç, M., & Altan, T. (2005). Prediction of tensile properties considering specimen geometry. CIRP Annals, 54(1), 229–232. https://doi.org/10.1016/S0007-8506(07)60088-4
Lee, H. J., Kim, J. H., & Lee, S. H. (2011). Effect of specimen width on tensile behavior of sheet metals. Materials Science and Engineering A, 528(15), 5343–5349. https://doi.org/10.1016/j.msea.2011.03.021
Lee, K., & Hyon, S. (2008). Superplastic tensile deformation and specimen geometry. Materials Science Forum, 594–598, 563–568. https://doi.org/10.4028/www.scientific.net/MSF.594-598.563
Meyers, M. A., & Chawla, K. K. (2009). Mechanical behavior of materials (2nd ed.). Cambridge, UK: Cambridge University Press.
Salviato, M., Kirane, M., & Bažant, Z. P. (2019). Size effect on fracture behavior of composites. Composites Science and Technology, 171, 12–21. https://doi.org/10.1016/j.compscitech.2018.12.016
Singh, S. K., Kumar, A., & Gupta, V. K. (2014). Size effect in tensile testing of steels. Journal of Materials Processing Technology, 214(11), 2458–2464. https://doi.org/10.1016/j.jmatprotec.2014.05.009
Singh, S. K., Sharma, P., & Patel, R. (2017). Inverse analysis of AISI 1010 using Taylor impact test. Journal of Applied Mechanics, 84(2), 021006. https://doi.org/10.1115/1.4035360
Smith, D., & Jones, S. (2009). Specimen geometry effects on tensile strength of CFRP. Composite Structures, 91(2), 245–251. https://doi.org/10.1016/j.compstruct.2009.04.006
Smith, J., & Lee, A. (2010). Numerical simulation of tensile behavior in low carbon steels. Materials & Design, 31(4), 2151–2158. https://doi.org/10.1016/j.matdes.2009.11.054
Thompson, R. G. (2012). Gauge length influence on tensile properties. Experimental Mechanics, 52(2), 133–142. https://doi.org/10.1007/s11340-011-9506-7
Xie, Y., & Ke, T. (2014). Geometrical influence on necking and fracture in tensile specimens. Journal of Strain Analysis for Engineering Design, 49(3), 170–182. https://doi.org/10.1177/0309324713490531
Yang, Z., Li, X., & Zhao, H. (2013). Finite element modeling of tensile test for steels. Computational Materials Science, 70, 59–68. https://doi.org/10.1016/j.commatsci.2012.12.004
AZoM. (2012, September 21). AISI 1010 carbon steel (UNS G10100) – Mechanical properties. AZoM.com. https://www.azom.com/article.aspx?ArticleID=6539
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Iskandar Yasin, Andi Ibrahim Soumi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


